skip to content

Biological and Soft Systems



Key publications: 

[19]     R. Collepardo-Guevara, G. Portella, D. Frenkel, M. Vendruscolo, T. Schlick, and M. Orozco, Chromatin Unfolding by Epigenetic Modifications Explained by Dramatic Impairment of Internucleosome Interactions: A Multiscale Computational Study, J Am Chem Soc, (2015) 137:10205

[18]     Gungor Ozer, R. Collepardo-Guevara and T. Schlick, Forced unravelling of chromatin fibers with nonuniform linker DNA lengths, J Phys: Cond Matt, (2015) 27:064113

[17]     R. Collepardo-Guevara and T. Schlick, Chromatin fiber polymorphism triggered by variations of DNA linker lengths, Proc Natl Acad Sci USA, (2014) 111:8061

[16]     D. Chakraborty, R. Collepardo-Guevara, D. J. Wales, Energy landscapes, folding mechanisms, and kinetics of RNA tetraloop hairpins, J Am Chem Soc, (2014) 136:18052

[15]     A. Arcella, G. Portella, R. Collepardo-Guevara, D. Chakraborty, D. J. Wales, M. Orozco, Structure and Properties of DNA in Apolar Solvents, J Phys Chem B, (2014) 118:8540

[14]     A. Luque, R. Collepardo-Guevara, S. Grigoryev, and T. Schlick, Dynamic condensation of linker histone C-terminal domain regulates chromatin structure, Nucleic Acids Res, (2014) 42:7553

[13]     A. Hospital, I. Faustino, R. Collepardo-Guevara, C. González, J. Lluís Gelpí, M. Orozco, NAFlex: A web server for the study of nucleic acids flexibility, Nucleic Acids Res, (2013) 41:W47

[12]     R. Collepardo-Guevara and T. Schlick, Insights into chromatin fibre structure by in vitro and in silico single-molecule stretching experiments, Biochem Soc Trans, (2013) 41:494 

[11]     R. Collepardo-Guevara and T. Schlick, Crucial role of dynamic linker histone binding for DNA accessibility and gene regulation revealed by mesoscale modeling of oligonucleosomes, Nucleic Acids Res, (2012) 40:8803 

[10]   R. Collepardo-Guevara and T. Schlick, The effect of linker histone’s nucleosome binding affinity on chromatin unfolding mechanisms, Biophys J, (2011) 101:1670 

[9]   T. Schlick and R. Collepardo-Guevara, Biomolecular Modeling and Simulation: The Productive Trajectory of a Field, SIAM News, (2011) 44:6 

[8]   Y. Suleimanov, R. Collepardo-Guevara, and D. E. Manolopoulos, Bimolecular reaction rates from ring polymer molecular dynamics: application to H + CH4 → H2 + CH3, J Chem Phys, (2011) 134:044131 

[7]   T. Schlick, R. Collepardo-Guevara, L. A. Halvorsen, S. Jung, and X. Xiao, Biomolecular modelling and simulation: a field coming of age, Quart Rev Biophys, (2011) 43:1 

[6]   O. Perisic+, R. Collepardo-Guevara+, and T. Schlick, Modelling studies of chromatin fiber structure as a function of DNA linker length, J Mol Bio, (2010) 403:777 +co-first authors

[5]   R. Collepardo-Guevara, Y. Suleimanov, and D. E. Manolopoulos, Bimolecular chemical reaction rates from ring polymer rate theory, J Chem Phys, (2009) 130:174713 

[4]   R. Collepardo-Guevara, I. R. Craig, and D. E. Manolopoulos, Proton transfer in a polar solvent from ring polymer molecular dynamics reaction rate theory, J Chem Phys, (2008) 128:144502 

[3]   R. Collepardo-Guevara and E. Corvera Poiré, Controlling viscoelastic flow by tuning frequency during occlusions, Phys Review E, (2007) 76:026301 

[2]   R. Collepardo-Guevara and E. Corvera Poiré, Maximizing the dynamic permeability during occlusions, Eur. Phys. J. Special Topics, (2007) 143:95 

[1]   R. Collepardo-Guevara, D. Walter, and D. Neuhauser, and R. Baer, A Hückel study of the effect of a molecular resonance cavity on the quantum conductance of an alkene wire, Chem Phys Lett, (2004) 393:367

Winton Advanced Research Fellow
Dr Rosana  Collepardo
Not available for consultancy